Deep Learning in five steps

Undergraduate course, Wroclaw University, Faculty of Physics and Astronomy, 2023

Deep Learning in five steps.

Lecture 1

  • 1.1. Preliminaries
  • 1.2. My Works
  • 1.3. Some historical remarks
  • 1.4. Deep Learning (DL)
    • 1.4.1. DL in AI
    • 1.4.2. Machine Learning (ML)
    • 1.4.3. Deep learning
    • 1.4.4 What types of the problem DL solves
  • 1.5. Linear regression problem
    • 1.5.1 Some theory
    • 1.5.2. Simple implementation
  • 1.6. Keras for linear regression

Lecture 2

  • 2.1 Generalities of Keras
  • 2.2. Nonlinear regression - Neural Networks
  • 2.3. Universal approximation theorem
  • 2.4. Propagation of signal and back-propagation of error
  • 2.5. The general strategies for Gradient Descent Optimization
  • 2.6. The popular gradient descent algorithms
    • 2.6.1. Gradient Descent with the momentum
    • 2.6.2. AdaGrad
    • 2.6.3. RMSProp
    • 2.6.4. Adaptive Moment Estimation (Adam)
  • 2.7. Predicting Boston Houce Prices - a nonlinear regression problem
  • 2.8. Vanishing gradient problem

Lecture 3

  • 3.1. Cross-Entropy for two clsses - Binary Cross-Entropy
  • 3.2. Binary clssification: IMDB data
  • 3.3. Multiple independent attributes
  • 3.4. More than two classes mutually exclusive
  • 3.5. MNIST a “Hello Word of Deep Learning”
  • 3.6. Basics of the Convolutional Neural Network (CNN)
  • 3.7. General remarks on ConvNet
  • 3.8. ConvNet in Keras
  • 3.9. DropOut Layer
  • 3.10. Batch normalization layer
  • 3.11. MNIST from ConvNet

Lecture 4

  • 4.1 Getting Data From Kaggle
  • 4.2. Preprocessing and data augmentation
    • 4.2.1. Defining Model
    • 4.2.2 Data Processing – Generator
    • 4.2.3 Data Augmentation

Lecture 5

  • 5.1 Pretrained models